Age-optimal Sampling and Transmission Scheduling in Multi-Source Systems

论文链接:Age-optimal Sampling and Transmission Scheduling in Multi-Source Systems

Main

主要贡献

什么模型下 MAF 不是最优的呢??

模型与求解

Because of the randomness of the trans-mission times, our model belongs to the class of semi-Markov de-cision problems (SMDPs)

System Model

|500

Di=Si+YiSi+1=Di+Zi

|500

Δl(t)=tUl(t)

Optimization Problem

Δpeak(π,f)=limnsupn1nE[i=1nΔri(Di)]Δavg(π,f)=limnsupnE[l=1m0DnΔl(t)dt]E[Dn]

Optimal Scheduling Strategy

MAF (Maximum Age First scheduling strategy)

|700

Δpeak(πMAF,f)Δpeak(π,f),Δavg(πMAF,f)Δavg(π,f).

证明思路
对于任意采样策略,对所有策略固定其传输时间,只关注发送对象,对于非 MAF 策略,which is not necessary the one with maximum age, and the chosen source becomes the one with minimum age among the m sources after the delivery. 易证

Δ¯peakoptminfFΔpeak(πMAF,f)Δ¯avgoptminfFΔavg(πMAF,f)

Optimal Sampler

0DnΔl(t)dt=i=0n1QliQli=ali(Zi+Yi+1)+12(Zi+Yi+1)2(16)Δ¯avgoptminfFlim supni=0n1E[Ai(Zi+Yi+1)+m2(Zi+Yi+1)2]i=0n1E[Zi+Yi+1]

可以看出这里分子分母为 Zi 递增函数,因此 Δ¯avgopt 不随其单调递增,Zero-wait 并非最好策略

(17)p(β)minfFlimnsupn1ni=0n1E[(Aiβ)(Zi+Yi+1)+m2(Zi+Yi+1)2]

Lagrange!β 即分子分母的比

仿真


Notes

Memo


© 2024 LiQ :) 由 Obsidian&Github 强力驱动