关于推理

前置问题

A first inference problem

@ Ex3.3: ../../PHOTO/关于推理/img-20240828111504549.png

类似问题:(某年数学建模)假设某市出租车有自身序号从 1 到 n,一段时间内随机观测路上出现的出租车并记录下其各自序号,如何估算本市出租车数量 n?

....

The bent coin and model comparison

下例表明贝叶斯推理可以给出先验概率以外更多信息

@ Ex3.4
Two people have left traces of their own blood at the scene of a crime. A suspect, Oliver, is tested and found to have type ‘O’ blood. The blood groups of the two traces are found to be of type ‘O’ (a common type in the local population, having frequency 60%) and of type ‘AB’ (a rare type, with frequency 1%). Do these data (type ‘O’ and ‘AB’ blood were found at scene) give evidence in favour of the proposition that Oliver was one of the two people present at the crime?

嫌疑犯与一个相对普遍的血型相同,能说明他更有可能在现场吗?

可以假设命题“该嫌疑犯与另一未知人士出现在现场”记作 S,“两个未知人士出现在现场”记作 S。案件先验知识为两个命题的先验概率比值 P(D|S,H)/P(D|S,H)

这里 H 表示假设:两个人出现在现场中留下了血迹,且未知嫌疑犯血型概率分布与人群相同

P(D|S,H)=pABP(D|S,H)=2pOpABP(D|S,H)P(D|S,H)=12pO0.83

上述结果给出了 Oliver 不在现场的较弱证明

虽然不太符合直觉,但改变下场景,考虑以下情形:

P(D|S,H)P(D|S,H)=pO2pOpAB=50 P(n0,nAB|S)=N!n0!nAB!p0nOpABnABP(n0,nAB|S)=(N1)!(n01)!nAB!pOnO1pABnABP(nO,nABS)P(nO,nABS¯)=nO/NpO

上式说明 Oliver 是否出现在现场问题的贡献仅取决于他的血型在观测数据中频度与人群中频度的比较,与其他血型数据无关!


© 2024 LiQ :) 由 Obsidian&Github 强力驱动